68 research outputs found

    Speech vocoding for laboratory phonology

    Get PDF
    Using phonological speech vocoding, we propose a platform for exploring relations between phonology and speech processing, and in broader terms, for exploring relations between the abstract and physical structures of a speech signal. Our goal is to make a step towards bridging phonology and speech processing and to contribute to the program of Laboratory Phonology. We show three application examples for laboratory phonology: compositional phonological speech modelling, a comparison of phonological systems and an experimental phonological parametric text-to-speech (TTS) system. The featural representations of the following three phonological systems are considered in this work: (i) Government Phonology (GP), (ii) the Sound Pattern of English (SPE), and (iii) the extended SPE (eSPE). Comparing GP- and eSPE-based vocoded speech, we conclude that the latter achieves slightly better results than the former. However, GP - the most compact phonological speech representation - performs comparably to the systems with a higher number of phonological features. The parametric TTS based on phonological speech representation, and trained from an unlabelled audiobook in an unsupervised manner, achieves intelligibility of 85% of the state-of-the-art parametric speech synthesis. We envision that the presented approach paves the way for researchers in both fields to form meaningful hypotheses that are explicitly testable using the concepts developed and exemplified in this paper. On the one hand, laboratory phonologists might test the applied concepts of their theoretical models, and on the other hand, the speech processing community may utilize the concepts developed for the theoretical phonological models for improvements of the current state-of-the-art applications

    Deep speech inpainting of time-frequency masks

    Full text link
    Transient loud intrusions, often occurring in noisy environments, can completely overpower speech signal and lead to an inevitable loss of information. While existing algorithms for noise suppression can yield impressive results, their efficacy remains limited for very low signal-to-noise ratios or when parts of the signal are missing. To address these limitations, here we propose an end-to-end framework for speech inpainting, the context-based retrieval of missing or severely distorted parts of time-frequency representation of speech. The framework is based on a convolutional U-Net trained via deep feature losses, obtained using speechVGG, a deep speech feature extractor pre-trained on an auxiliary word classification task. Our evaluation results demonstrate that the proposed framework can recover large portions of missing or distorted time-frequency representation of speech, up to 400 ms and 3.2 kHz in bandwidth. In particular, our approach provided a substantial increase in STOI & PESQ objective metrics of the initially corrupted speech samples. Notably, using deep feature losses to train the framework led to the best results, as compared to conventional approaches.Comment: Accepted to InterSpeech202

    Spiking neural networks trained with backpropagation for low power neuromorphic implementation of voice activity detection

    Full text link
    Recent advances in Voice Activity Detection (VAD) are driven by artificial and Recurrent Neural Networks (RNNs), however, using a VAD system in battery-operated devices requires further power efficiency. This can be achieved by neuromorphic hardware, which enables Spiking Neural Networks (SNNs) to perform inference at very low energy consumption. Spiking networks are characterized by their ability to process information efficiently, in a sparse cascade of binary events in time called spikes. However, a big performance gap separates artificial from spiking networks, mostly due to a lack of powerful SNN training algorithms. To overcome this problem we exploit an SNN model that can be recast into an RNN-like model and trained with known deep learning techniques. We describe an SNN training procedure that achieves low spiking activity and pruning algorithms to remove 85% of the network connections with no performance loss. The model achieves state-of-the-art performance with a fraction of power consumption comparing to other methods.Comment: 5 pages, 2 figures, 2 table

    An Analysis of Rhythmic Staccato-Vocalization Based on Frequency Demodulation for Laughter Detection in Conversational Meetings

    Get PDF
    Human laugh is able to convey various kinds of meanings in human communications. There exists various kinds of human laugh signal, for example: vocalized laugh and non vocalized laugh. Following the theories of psychology, among all the vocalized laugh type, rhythmic staccato-vocalization significantly evokes the positive responses in the interactions. In this paper we attempt to exploit this observation to detect human laugh occurrences, i.e., the laughter, in multiparty conversations from the AMI meeting corpus. First, we separate the high energy frames from speech, leaving out the low energy frames through power spectral density estimation. We borrow the algorithm of rhythm detection from the area of music analysis to use that on the high energy frames. Finally, we detect rhythmic laugh frames, analyzing the candidate rhythmic frames using statistics. This novel approach for detection of `positive' rhythmic human laughter performs better than the standard laughter classification baseline.Comment: 5 pages, 1 figure, conference pape

    ALO-VC: Any-to-any Low-latency One-shot Voice Conversion

    Full text link
    This paper presents ALO-VC, a non-parallel low-latency one-shot phonetic posteriorgrams (PPGs) based voice conversion method. ALO-VC enables any-to-any voice conversion using only one utterance from the target speaker, with only 47.5 ms future look-ahead. The proposed hybrid signal processing and machine learning pipeline combines a pre-trained speaker encoder, a pitch predictor to predict the converted speech's prosody, and positional encoding to convey the phoneme's location information. We introduce two system versions: ALO-VC-R, which uses a pre-trained d-vector speaker encoder, and ALO-VC-E, which improves performance using the ECAPA-TDNN speaker encoder. The experimental results demonstrate both ALO-VC-R and ALO-VC-E can achieve comparable performance to non-causal baseline systems on the VCTK dataset and two out-of-domain datasets. Furthermore, both proposed systems can be deployed on a single CPU core with 55 ms latency and 0.78 real-time factor. Our demo is available online.Comment: Accepted to Interspeech 2023. Some audio samples are available at https://bohan7.github.io/ALO-VC-demo

    MOSRA: Joint Mean Opinion Score and Room Acoustics Speech Quality Assessment

    Full text link
    The acoustic environment can degrade speech quality during communication (e.g., video call, remote presentation, outside voice recording), and its impact is often unknown. Objective metrics for speech quality have proven challenging to develop given the multi-dimensionality of factors that affect speech quality and the difficulty of collecting labeled data. Hypothesizing the impact of acoustics on speech quality, this paper presents MOSRA: a non-intrusive multi-dimensional speech quality metric that can predict room acoustics parameters (SNR, STI, T60, DRR, and C50) alongside the overall mean opinion score (MOS) for speech quality. By explicitly optimizing the model to learn these room acoustics parameters, we can extract more informative features and improve the generalization for the MOS task when the training data is limited. Furthermore, we also show that this joint training method enhances the blind estimation of room acoustics, improving the performance of current state-of-the-art models. An additional side-effect of this joint prediction is the improvement in the explainability of the predictions, which is a valuable feature for many applications.Comment: Submitted to Interspeech 202

    Baseline System for Automatic Speech Recognition with French GlobalPhone Database

    Get PDF
    This report presents one month trainee work on development of French Automatic Speech Recognition ASR system using a french part of multilingual database GlobalPhone_FR. The purpose of this report is to explain and give results of the training and testing of the ASR with this specific database. Two different methods are presented, the Hidden Markov Model (HMM) with MFCC/PLP features and tandem features from Multilayer Perceptron (MLP) phone posteriors. The report presents data preparation for GlobalPhone_FR ASR training, and compares the two different approaches. Word recognition accuracy achieved with MFCC features is 71.46% and the tandem features with 3-layer MLP improved the accuracy to 72.15%. We interpret this result as a baseline for the GlobalPhone_FR database
    • …
    corecore